

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Vibrational Analysis of the 2665 A° System of Toluene $\alpha$ -d<sub>3</sub>

G. N. R. Tripathi<sup>a</sup>; B. N. Tewari<sup>b</sup>

<sup>a</sup> Department of Physics, University of Gorakhpur, GORAKHPUR, INDIA <sup>b</sup> Kisan Degree College, Bahraich

**To cite this Article** Tripathi, G. N. R. and Tewari, B. N.(1976) 'Vibrational Analysis of the 2665 A° System of Toluene  $\alpha$ -d<sub>3</sub>', Spectroscopy Letters, 9: 6, 353 — 375

**To link to this Article: DOI:** 10.1080/00387017608067446

**URL:** <http://dx.doi.org/10.1080/00387017608067446>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL ANALYSIS OF THE 2665 Å<sup>0</sup>  
SYSTEM OF TOLUENE  $\alpha$ -d<sub>3</sub>

G. N. R. Tripathi

Department of Physics

University of Gorakhpur

GORAKHPUR 273001

INDIA

&

B. N. Tewari

Kisan Degree College, Bahraich.

Abstract

The vibrational analysis of the near ultraviolet spectrum of toluene  $\alpha$ -d<sub>3</sub> molecule has been done. The (0,0) band has been assigned at 37515 cm<sup>-1</sup> (2664.8 Å). The observed bands have been interpreted in terms of the ground state fundamental frequencies 201, 305, 402, 500, 624, 759 & 1005 cm<sup>-1</sup> and excited state frequencies 298, 316, 430, 528, 733, 930, 970

&  $1130\text{ cm}^{-1}$ . The fundamentals determined from the infra red, Raman and electronic spectra of toluene and toluene  $\alpha$ -d<sub>3</sub> molecules are correlated. The toluene and toluene  $\alpha$ -d<sub>3</sub> molecules are assigned to C<sub>2v</sub> point group in the ground electronic state. A non-planar geometrical configuration in the excited electronic state has been suggested to explain the intensity of some of the upper state fundamentals of low magnitude. An isotopic shift of  $40\text{ cm}^{-1}$  has been found for the (0,0) band of toluene  $\alpha$ -d<sub>3</sub> with respect to the normal toluene molecule.

### INTRODUCTION

The electronic band system which appears in the wavelength region  $2600\text{--}3000\text{ \AA}^0$  in benzene derivatives corresponds to the symmetry forbidden transition A<sub>1g</sub>-B<sub>2u</sub> of benzene. The role of a substituent group, which replaces one of the six hydrogen atoms of benzene, is to alter its high symmetry and hence to allow the transition. The intensity and shift in the spectra of a benzene derivative is interpreted in terms of inductive and mesomeric effects. In the derivatives exerting weak inductive and mesomeric effects, like -CH<sub>3</sub> group, the electronic spectra are expected to have more correspondence with the benzene molecule. Therefore, toluene molecule should exhibit the peculiarities of an allowed transition while still retaining some features of the forbidden  $2600\text{ \AA}^0$  transition.

of benzene, which makes the vibrational assignment of electronic spectrum of toluene molecule quite interesting. The near ultraviolet spectra of toluene molecule was studied by Guisberg et al.<sup>(3)</sup> while infra <sup>red</sup> spectrum of toluene and toluene- $\alpha$ -d<sub>3</sub> by Wilmshurst and Bernstein<sup>(7)</sup> Tripathi et al<sup>(4,5)</sup> studied near ultraviolet spectra of a few derivatives of toluene. Lau and Snyder<sup>(1)</sup> have correlated Raman and infra red frequencies of toluene, toluene-d<sub>3</sub> and toluene- $\alpha$ -d<sub>3</sub> molecules. The electronic spectra of only a few deuterated benzenes are reported, in literature. The present paper considers in detail the vibrational analysis of the electronic absorption spectrum of toluene- $\alpha$ -d<sub>3</sub> molecule. The spectrum of this molecule is expected to show a close resemblance with that of normal toluene. The replacement of hydrogen atom by deuterium affects some of the fundamentals in the ground and excited electronic states. This helps in identifying the fundamentals sensitive to substitution (x-sensitive). The (0,0) band may also show a shift with respect to the parent molecule due to change in the difference of zero point energies in the two electronic states. We have determined several ground and excited state fundamental vibrational frequencies and their corresponding vibrational modes have been assigned taking help of the infra red and Raman spectra<sup>(1,2,3,6)</sup>. Some of the fundamentals in the excited state have been chosen just to explain the difference frequencies and the symmetry of the toluene and toluene- $\alpha$ -d<sub>3</sub> molecules in the upper electronic

state is discussed in the light of the appreciable intensity of the bands involving these fundamentals.

Experimental Procedure:- A sample of toluene- $\alpha$ -d<sub>3</sub> compound of high purity was procured from M/S Merck Sharp & Dohme, Canada and was used as such. The spectrum was photographed on Hilger medium quartz spectrograph using absorption path of 50 cm<sup>-1</sup> long tube, at room temperature. The exposure time was varied from 20 minutes to one hour. The hydrogen lamps was used as a source of continuous energy and an iron arc for recording the standard spectrum of iron to compare the spectrum of toluene- $\alpha$ -d<sub>3</sub>. Only a fraction of a drop of the compound, when inserted in the absorption column, results into sufficient quantity of vapours to cause the absorption of important bands. The weaker bands have been developed by increasing the amount of compound in the absorption column.

The band positions of the molecule corrected to the vacuum, their intensities and vibrational assignments are given in Table 1. In Table 2, the fundamental frequencies of toluene- $\alpha$ -d<sub>3</sub> are compared with the frequencies reported in Raman and infra red spectra. These are also compared with the values for toluene and toluene- $\alpha$ -d<sub>1</sub>, molecules. The accuracy of our observations is  $\pm 3$  cm<sup>-1</sup> for sharp bands and  $\pm 5$  cm<sup>-1</sup> for diffused and weak bands. The purity of the toluene- $\alpha$ -d<sub>3</sub> sample has been confirmed by non appearance of even the strongest bands of toluene in the spectrum of toluene- $\alpha$ -d<sub>3</sub>.

Results & Discussion:-

As pointed out in introduction the -CH<sub>3</sub> and -CD<sub>3</sub> substituent groups have a small perturbation effect on the orbitals of phenyl ring electrons. Therefore, the spectrum of toluene is expected to retain certain features of benzene spectrum as well as other features arising from the reduction of symmetry from D<sub>6h</sub> to lower symmetry type. The (0,0) band is expected to appear with appreciable intensity. Sponer<sup>(3)</sup> has assigned a symmetry C<sub>3</sub> and Ginsberg et al<sup>(3)</sup> C<sub>2v</sub> to explain the electronic spectrum of toluene. Pitzer and Scott<sup>(3)</sup> considered symmetry C<sub>2v</sub> to explain Raman spectrum of toluene and Lau and Snyder<sup>(1)</sup> in the analysis of Raman and infra red spectra of toluene, toluene  $\alpha$ -d<sub>3</sub> and toluene -d<sub>3</sub>. Our attempt is to verify these points from the vibrational analysis of toluene  $\alpha$ -d<sub>3</sub> proposed here. If we assign C<sub>2v</sub> point group to toluene  $\alpha$ -d<sub>3</sub> molecule, the A<sub>1g</sub> - B<sub>2u</sub> transition of benzene will appear as A<sub>1</sub>-B<sub>2</sub>, the electronic moment lying in the plane of molecule and perpendicular to the C-CD<sub>3</sub> axis. The vibrations of symmetry type a<sub>1</sub>, b<sub>2</sub> and a<sub>2</sub> are allowed to appear as 0-1 and 1-0 transitions. However only those vibrations which induce the electric moment in the direction of X- axis will be strong and as such the transitions accompanying the vibrations of symmetry type a<sub>1</sub> should have appreciable intensity while those accompanying b<sub>2</sub> and a<sub>2</sub> type of vibrations should be weaker. Since some features of C<sub>6</sub>H<sub>6</sub> are expected to remain in the spectrum of toluene  $\alpha$ -d<sub>3</sub>,

Table 1

The assignment of observed frequencies of toluene-d<sub>3</sub>

| Band position | Difference from (0,0) | Intensity (1) (ii) | Assignment         |
|---------------|-----------------------|--------------------|--------------------|
| 36129         | -1386                 | vvw                | 0-1386             |
| 36302         | -1213                 | *                  | 0-1005-201, 0-1213 |
| 36382         | -1133                 | *                  | 0-1005-115         |
| 36425         | -1090                 | *                  | 0-1005-74          |
| 36510         | -1005                 | w                  | 0-1005             |
| 36548         | -964                  | vw                 | 0-759-201          |
| 36590         | -925                  | *                  | 0-624-305          |
| 36624         | -891                  | *                  | 0-759-137          |
| 36682         | -833                  | *                  | 0-759-74           |
| 36700         | -815                  | *                  | 0-759-54           |
| 36723         | -792                  | w                  | 0-759-36           |
| 36756         | -759                  | m                  | 0-759              |
| 36783         | -732                  | vw                 | 0-624-105          |
| 36793         | -722                  | w                  | 0-624-93           |
| 36837         | -678                  | w                  | 0-624-54           |
| 36852         | -663                  | vvw                | 0-624-36           |
| 36870         | -645                  | *                  | 0-624-24           |
| 36891         | -624                  | m                  | 0-624              |
| 36907         | -608                  | w                  | 0-500-105          |
| 36926         | -589                  | m                  | 0-500-93           |
| 36949         | -566                  | vvw                | 0-500-74           |
| 36964         | -551                  | w                  | 0-500-54           |
| 36980         | -535                  | vvw                | 0-500-36           |
| 36996         | -519                  | *                  | 0-500-22           |

Contd.../-

|       |       |     |                      |
|-------|-------|-----|----------------------|
| 37015 | - 500 | m   | 0-500                |
| 37061 | - 454 | vvw | 0-402-54             |
| 37082 | - 433 | vw  | 0-402-36             |
| 37113 | - 402 | w   | 0-402, 0-2x201       |
| 37127 | - 388 | vvw | 0-201-179            |
| 37142 | - 373 | vw  | 0-305-74             |
| 37164 | - 351 | m   | 0-305-54             |
| 37195 | - 320 | vw  | 0-201-115            |
| 37210 | - 305 | m   | 0-305, 0-201-105     |
| 37220 | - 295 | vvw | 0-201-93             |
| 37241 | - 274 | s   | 0-201-74             |
| 37259 | - 256 | w   | 0-201-54             |
| 37279 | - 236 | vvw | 0-2x115, or 0-201-36 |
| 37299 | - 216 | vw  | 0-2x105, 0-4x54      |
| 37314 | - 201 | vvw | 0-201                |
| 37336 | - 179 | s   | 0-500+316, 0-179     |
| 37366 | - 149 |     | vvw                  |
| 37378 | - 137 |     | w                    |
| 37400 | - 115 |     | vw                   |
| 37410 | - 105 |     | w                    |
| 37422 | - 93  |     | vw                   |
| 37441 | - 74  |     | w                    |
| 37461 | - 54  |     | m                    |
| 37479 | - 36  |     | w                    |
| 37491 | - 24  |     | vvw                  |
| 37515 | ---   |     | vvw                  |
| 37550 | 35    |     | (0,0) band           |
| 37569 | 54    |     | *                    |
|       |       |     | 0+144-105, 0+35      |
|       |       |     | 0+144-93, 0+54       |

Contd.. /-

Table One (cont.)

|       |     |     |                      |
|-------|-----|-----|----------------------|
| 37595 | 80  | vw  | 0*144-74, 0*80       |
| 37624 | 108 | m   | 0-144-36, 0-108      |
| 37659 | 144 | m   | 0*147                |
| 37672 | 157 | *   | 0*298-2x74           |
| 37688 | 173 | w   | 0*144*35             |
| 37701 | 186 | vvw | 0*298-115            |
| 37732 | 217 | w   | 0*298-74             |
| 37752 | 237 | vw  | 0*298-54             |
| 37780 | 265 | *   | 0*298-36             |
| 37796 | 281 | vvw | 0*316-36             |
| 37813 | 298 | s   | 0*298, 0*2x147       |
| 37831 | 316 | w   | 0*316                |
| 37849 | 334 | vvw | 0*430-93             |
| 37869 | 354 | vvw | 0*430-74             |
| 37886 | 371 | vw  | 0*430-54             |
| 37903 | 388 | m   | 0*430-36             |
| 37950 | 435 | *   | 0*430                |
| 37967 | 452 | w   | 0*528-74             |
| 37985 | 470 | s   | 0*528-54             |
| 37999 | 484 | w   | 0*528-36             |
| 38018 | 503 | vvw | 0*528-24             |
| 38043 | 528 | vs  | 0*528                |
| 38064 | 549 | w   | 0*733-179            |
| 38090 | 575 | m   | 0*733-149, 0*430+144 |
| 38119 | 604 | *   | 0*733-137            |
| 38135 | 620 | *   | 0*733-115, 0*298+316 |
| 38149 | 634 | vw  | 0*733-93, 0*2x316    |
| 38165 | 650 | vvw | 0*733-74             |

|       |      |     |                      |
|-------|------|-----|----------------------|
| 38191 | 676  | v   | 0*733-54, 0*528*144  |
| 38218 | 703  | vv  | 0*733-24             |
| 38248 | 733  | ■   | 0*733                |
| 38280 | 765  | *   | 0*733*35             |
| 38315 | 800  | vvv | 0*930-137            |
| 38358 | 843  | vv  | 0*733*109, 0*316*528 |
| 38398 | 883  | v   | 0*930-54             |
| 38425 | 910  | vvv | 0*930-22             |
| 38445 | 930  | ■   | 0*930                |
| 38472 | 957  | v   | 0*430*528            |
| 38480 | 970  | s   | 0*930*35             |
| 38510 | 995  | ■   | 0*1130-137           |
| 38544 | 1029 | vvv | 0*1130-105           |
| 38560 | 1045 | vw  | 0*1130-93            |
| 38578 | 1063 | v   | 0*1130-74            |
| 38621 | 1106 | v   | 0*1130-24            |
| 38645 | 1130 | ■   | 0*1130               |
| 38671 | 1156 | v   | 0*528*733-105        |
| 38694 | 1179 | *   | 0*528*733-93         |
| 38712 | 1197 | *   | 0*733*528-74         |
| 38740 | 1225 | ■   | 0*733*528-36         |
| 38764 | 1249 | vv  | 0*733*528-22         |
| 38783 | 1268 | *   | 0*733*528            |
| 38809 | 1294 | vvv | 0*733*528*35         |
| 38832 | 1317 | v   | 0*733*528*54         |
| 38863 | 1348 | vvv | 0*1130*298-74        |
| 38887 | 1372 | v   | 0*1130*298-54        |
| 38920 | 1405 | ■   | 0*1130*298-22        |

Contd.. /-

Table One (cont.)

|       |      |     |                    |
|-------|------|-----|--------------------|
| 38944 | 1429 | w   | 0+1130+298         |
| 38972 | 1457 | m   | 0+2x733, 0+930+528 |
| 38997 | 1482 | vvw | 0+733+930-179      |
| 39013 | 1498 | s   | 0+733+930-149      |
| 39034 | 1519 | m   | 0+733+930-137      |
| 39056 | 1541 | vw  | 0+733+930-115      |
| 39073 | 1558 | m   | 0+733+930-105      |
| 39087 | 1572 | *   | 0+733+930-93       |
| 39104 | 1589 | vw  | 0+733+930-74       |
| 39118 | 1603 | *   | 0+733+930-54       |
| 39136 | 1621 | w   | 0+733+930-36       |
| 39152 | 1637 | *   | 0+733+930-24       |
| 39173 | 1658 | vw  | 0+733+930          |
| 39187 | 1672 | w   | 0+733+970-36       |
| 39206 | 1691 | *   | 0+733+970-24       |
| 39220 | 1705 | m   | 0+733+970          |
| 39236 | 1721 | w   | 0+930+970-179      |
| 39261 | 1746 | m   | 0+930+970-149      |
| 39276 | 1761 | vw  | 0+930+970-137      |
| 39299 | 1784 | vw  | 0+930+970-115      |
| 39337 | 1822 | w   | 0+930+970-74       |
| 39356 | 1841 | vw  | 0+930+970-54       |
| 39390 | 1875 | vvw | 0+930+970-24       |
| 39421 | 1906 | m   | 0+930+970          |
| 39445 | 1930 | vw  | 0+930+970+35       |
| 39461 | 1946 | w   | 0+2x970            |
| 39481 | 1966 | *   | 0+970+2x528-54     |
| 39508 | 1993 | vvw | 0+970+2x528-24     |
| 39537 | 2022 | *   | 0+970+2x528        |

|       |      |     |                            |
|-------|------|-----|----------------------------|
| 39566 | 2051 | vw  | 0+2x1130-201               |
| 39603 | 2088 | "   | 0+2x1130-179               |
| 39628 | 2119 | "   | 0+2x1130-137               |
| 39655 | 2140 | "   | 0+2x1130-115               |
| 39676 | 2161 | vvw | 0+2x1130-105               |
| 39694 | 2179 | "   | 0+2x1130-93                |
| 39709 | 2194 | "   | 0+2x1130-74, 0+733+930+528 |
| 39725 | 2210 | "   | 0+2x1130-54                |
| 39747 | 2232 | vw  | 0+2x1130-22, 0+733+970+528 |
| 39772 | 2257 | "   | 0+2x1130                   |
| 39793 | 2278 | vvw | 0+930+2x733-115            |
| 39820 | 2305 | w   | 0+930+2x733-94             |
| 39844 | 2329 | vvw | 0+930+970+430              |
| 39858 | 2343 | w   | 0+2x733+930-54             |
| 39880 | 2365 | vvw | 0+2x733+930-36             |
| 39906 | 2391 | "   | 0+2x733-980                |
| 39924 | 2409 | vvw | 0+930+970+528-24           |
| 39942 | 2427 | "   | 0+930+970+528              |
| 39960 | 2445 | vw  | 0+2x930+733-149            |
| 39972 | 2457 | vvw | 0+2x930+733-137            |
| 39989 | 2474 | "   | 0+2x930+733-115            |
| 40012 | 2497 | w   | 0+930+2x733-94             |
| 40034 | 2519 | vvw | 0+733+2x930-74             |
| 40053 | 2538 | w   | 0+733+2x930-54             |
| 40066 | 2551 | vw  | 0+733+2x930-36             |
| 40111 | 2596 | vvw | 0+733+2x930                |
| 40146 | 2631 | w   | 0+930+970+733              |
| 40159 | 2644 | vvw | 0+3x930-149                |
| 40178 | 2663 | "   | 0+3x930-137                |

Contd... /-

Table One (cont.)

|       |      |       |                            |
|-------|------|-------|----------------------------|
| 40195 | 2680 | m     | 0+3x9 30-115               |
| 40219 | 2704 | vvw   | 0+3x9 30-74                |
| 40247 | 2732 | w     | 0+3x9 30-54                |
| 40264 | 2749 | vvw   | 0+3x9 30-36                |
| 40278 | 2763 | *     | 0+3x9 30-24                |
| 40306 | 2791 | m     | 0+3x9 30                   |
| 40337 | 2822 | vvw   | 0+3x9 30+35                |
| 40356 | 2841 | w     | 0+3x9 30+54                |
| 40383 | 2868 | vvw   | 0+3x9 30+80                |
| 40409 | 2894 | w     | 0+3x9 30+109               |
| 40429 | 2914 | *     | 0+2x733+9 30+528, 0+3x9 70 |
| 40461 | 2946 | vvw   | 0+3x9 70+35                |
| 40491 | 2976 | w,    | 0+3x9 70+54                |
| 40507 | 2992 | vvw   | 0+970x3+80                 |
| 40531 | 3016 | *     | 0+970x3+109                |
| 40541 | 3026 | w     | 0+9 30+3x733-105           |
| 40561 | 3046 | *     | 0+3x9 70+144               |
| 40586 | 3071 | m     | 0+9 30+3x733-54            |
| 40602 | 3087 | vw )  | 0+9 30+3x733-36            |
| 40613 | 3098 | vvw ) |                            |
| 40648 | 3133 | m     | 0+9 30+3x733               |
| 40672 | 3157 | w     | 0+9 30+3x733+35            |
| 40698 | 3183 | w     | 0+9 30+3x733+54            |
| 40714 | 3199 | vvw   | 0+3x1130-201               |
| 40733 | 3218 | vw    | 0+3x1130-179               |
| 40764 | 3249 | vvw   | 0+733+9 30+3x528           |
| 40786 | 3271 | w     | 0+3x1130-115               |
| 40819 | 3304 | vvw   | 0+3x1130-74                |

|       |      |     |                     |
|-------|------|-----|---------------------|
| 40839 | 3324 | vw  | 0+2x(733+930)       |
| 40869 | 3354 | *   | 0+3x1130-36         |
| 40909 | 3394 | *   | 0+3x1130            |
| 40942 | 3427 | *   | 0+3x1130+35         |
| 40976 | 3461 | *   | 0+3x1130+80         |
| 41037 | 3522 | vvw | 0+733+3x930         |
| 41060 | 3545 | *   | 0+3x1130+157        |
| 41102 | 3587 | *   | 0+3x1130+186        |
| 41127 | 3612 | *   | 0+2x733+2x930+298   |
| 41171 | 3656 | *   | 0+733+3x930+528     |
| 41206 | 3691 | *   | 0+930+4x733-179     |
| 41231 | 3716 | *   | 0+930+4x733-149     |
| 41288 | 3773 | *   | 0+733+930+4x528     |
| 41301 | 3786 | vw  | 0+930+4x733-74      |
| 41343 | 3828 | vvw | 0+930+4x733-36      |
| 41386 | 3871 | *   | 0+930+4x733         |
| 41408 | 3893 | *   | 0+733+528+3x930-149 |
| 41434 | 3919 | *   | 0+733+528+3x930-137 |
| 41450 | 3935 | *   | 0+733+528+3x930-115 |
| 41474 | 3959 | vw  | 0+733+528+3x930-93  |
| 41497 | 3982 | vvw | 0+733+528+3x930-74  |
| 41523 | 4008 | *   | 0+733+528+3x930-36  |
| 41551 | 4036 | *   | 0+733+528+3x930-22  |
| 41569 | 4054 | *   | 0+733+528+3x930     |
| 41584 | 4069 | *   | 0+3x733+2x930       |
| 41614 | 4099 | *   | 0+3x733+3x930-149   |

Contd.. /-

|       |      |     |                  |
|-------|------|-----|------------------|
| 41644 | 4129 | VVV | 0+3x1130+733     |
| 41662 | 1457 | *   | 0+2x733+3x930-93 |
| 41692 | 4177 | *   | 0+2x733+3x930-74 |
| 41723 | 4208 | *   | 0+3x930+2x733-54 |
| 41752 | 4237 | *   | 0+2x733+3x930-24 |
| 41781 | 4266 | *   | 0+2x733+3x930    |

v = very, s = strong, m = medium, w = weak.

Intensity (i) = at high vapour pressure, (ii) at low vapour pressure.

the components of 608 ( $\epsilon_{2g}$ ) vibration of benzene should play a significant role towards the intensity of the spectrum and therefore, should appear strongly even if one of them belong to symmetry type  $b_2$ . The  $b_1$  symmetry type which is not expected to appear as 0-1 or 1-0 transitions, may give rise to prominent bands in 1-1 transitions. If the toluene- $\alpha$ -d<sub>3</sub> molecule is classified to belong to C<sub>3</sub> point group, all the vibrations of benzene are contained only <sup>in</sup> two symmetry classes i. e. a' & a'' and both of these are allowed, of course, a'' being much weaker than a' vibrations.

The entire band system of toluene- $\alpha$ -d<sub>3</sub> molecule covers the region 2767-2430 Å. Nearly 225 bands have been measured and analysed. The bands are sharp in general and degraded towards red. At the lower vapour pressure of the toluene- $\alpha$ -d<sub>3</sub>

Table 2

Correlation of fundamentals of toluene  $\alpha$ -d<sub>3</sub>

| Ground state fundamentals |       |                                  |      | Excited state fundamentals |      |                                  |          |
|---------------------------|-------|----------------------------------|------|----------------------------|------|----------------------------------|----------|
| Toluene                   |       | Toluene $\alpha$ -d <sub>3</sub> |      | Toluene                    |      | Toluene $\alpha$ -d <sub>3</sub> |          |
| I.R.                      | Raman | u. v.                            | I.R. | Raman                      | u.v  | (present                         | (present |
| 220                       | 220   | -                                | 203  | 204                        | 201  | -                                | 144 ?    |
| -                         | 313   | -                                | 308  | 308                        | 305  | -                                | 298      |
| 407                       | -     | -                                | 406  | 405                        | 402  | -                                | 316      |
| 522                       | 523   | 514                              | 499  | 499                        | 500  | 456                              | 454      |
| 622                       | 624   | 620                              | 622  | 622                        | 624  | 528                              | 528      |
| 786                       | 788   | 785                              | 760  | 758                        | 759  | 751                              | 743      |
| 1005                      | 1005  | 1003                             | 1003 | 1003                       | 1005 | 932                              | 935      |
|                           |       |                                  |      |                            |      | 963                              | 970      |
|                           |       |                                  |      |                            |      | 1189                             | 1180     |
|                           |       |                                  |      |                            |      |                                  | 1130     |

? = doubtful.

molecule, the strongest band appears at  $37515\text{ cm}^{-1}$  (2664.8 Å) on the higher wavelength side of the absorption spectrum. This band has been assigned as the (0,0) band. The position of (0,0) band of toluene has been reported at  $37473\text{ cm}^{-1}$  by Spomer and  $37478\text{ cm}^{-1}$  by Ginsberg et al.<sup>(3)</sup> Taking mean of the two values, i.e.,  $37475\text{ cm}^{-1}$  as the position of (0,0) band for toluene molecule, a violet shift of  $40\text{ cm}^{-1}$  is observed for toluene- $\alpha\text{-d}_3$  molecule, with respect to the normal toluene. Dwivedi et al.<sup>(8)</sup> have reported (0,0) band position for toluene- $\alpha\text{-d}_1$  at  $37494\text{ cm}^{-1}$ , i.e., a shift of  $19\text{ cm}^{-1}$  towards violet end. Thus isotopic shift for toluene- $\alpha\text{-d}_3$  is more than two times as compared to the toluene- $\alpha\text{-d}_1$  molecule, which is as expected. The isotopic shift is obviously due to the change in the zero point energy of the ground and excited electronic states of the molecule.

An intense band appears at  $37461\text{ cm}^{-1}$  at a separation of  $54\text{ cm}^{-1}$  on the longer wavelength side of (0,0) band. This is a difference frequency, as none of the vibrations of benzene is expected to have this magnitude. The high intensity of this band indicates that this difference frequency should be explained as 1-1 transition of the vibrations of low magnitude. The lowest fundamental in the infra red and Raman spectra has been reported at 203 and  $204\text{ cm}^{-1}$  respectively by Lau & Snyder<sup>(1)</sup>. This frequency is depolarised and has been assigned to class  $b_1$  by them. As discussed earlier, the vibrations of this class are not expected to participate

in 0-1 and 1-0 transitions, and therefore, a band of appreciable intensity, at a separation of 203 cm<sup>-1</sup> on higher wavelength side of the (0,0) band is not expected to appear. We have observed a very very weak band at a separation of 201 cm<sup>-1</sup> on the higher wavelength side of the (0,0) band. The extremely weak intensity of a fundamental frequency of class b<sub>1</sub> justifies the classification of toluene- $\alpha$ -d<sub>3</sub> molecule to belong to C<sub>2v</sub> point group in the ground state.

The next ground state fundamental in the ascending order of magnitude is reported at 308 cm<sup>-1</sup> in infra red and Raman spectra. This frequency belongs to class b<sub>2</sub> as assigned by Lau & Snyder<sup>(1)</sup> and may appear as 0-1 or 1-0 transition in the near ultraviolet spectrum with weak intensity. We have obtained a medium intense band at frequency difference 305 cm<sup>-1</sup> on the lower frequency side of the spectrum. This vibration belongs to 16 b vibration of benzene molecule. The difference frequency 54 cm<sup>-1</sup> should find explanation in terms of any one of these two ground state fundamentals, i.e. 201 or 305 cm<sup>-1</sup>, preferentially the lower one. If 1-1 transition of fundamental 201 cm<sup>-1</sup> explains the difference frequency 54 cm<sup>-1</sup>, its excited state counterpart should have a frequency 147 cm<sup>-1</sup> with an extremely weak intensity, although its double multiple may have appreciable intensity. In vibrational analysis, we find a band of medium intensity at a separation of 144 cm<sup>-1</sup> on the shorter wavelength side of the (0,0) band. As there is no alternative explanation for the frequency

$144\text{ cm}^{-1}$ , it can be assigned as an excited state fundamental. The occurrence of a fundamental of  $b_1$  class with medium intensity in the excited state indicates a possible departure of the molecules from  $C_{2v}$  symmetry in the excited state. This can happen due to nonplanarity of the geometrical configuration of the molecule in the excited state. No observed excited state frequency can be correlated with the ground state fundamental  $305\text{ cm}^{-1}$  to explain  $54\text{ cm}^{-1}$ . Moreover a transition starting from a vibrational level of frequency  $201\text{ cm}^{-1}$  will be stronger than a transition starting from a vibration frequency  $305\text{ cm}^{-1}$  due to Boltzmann factor.

The first prominent band on the shorter wavelength side of the  $(0,0)$  band has been measured at  $37813\text{ cm}^{-1}$  and involves an excited state frequency  $298\text{ cm}^{-1}$ . This can be explained as  $2 \times 147 = 294$ . However, an alternative assignment as an excited state fundamental has been preferred for this frequency. It can be correlated with one of the ground state fundamentals  $305$  or  $402\text{ cm}^{-1}$ . The later fundamental has been measured at  $406\text{ cm}^{-1}$  in infrared and at  $405\text{ cm}^{-1}$  in Raman spectra<sup>(1)</sup> and is depolarised. It belongs to symmetry class  $a_2$  and is related to the  $16$  a vibration of Benzene. If one correlates the ground state fundamental  $402\text{ cm}^{-1}$  with the excited state fundamental  $298\text{ cm}^{-1}$ , a difference frequency  $104\text{ cm}^{-1}$  is expected as a result of their 1-1 transition, which has been actually observed. If the frequency  $298\text{ cm}^{-1}$  is not taken as fundamental, the ground state frequency  $402\text{ cm}^{-1}$

can also be explained as 2x201. Lau & Snyder<sup>(1)</sup> have justified the fundamental nature of 402 cm<sup>-1</sup> by theoretical calculations, and the same justification holds good in taking the frequency 298 cm<sup>-1</sup> as a fundamental.

The next ground state frequency has been reported at 447 cm<sup>-1</sup> in Raman spectrum which is polarised and belongs to symmetry class b<sub>1</sub>. This frequency appears at 448 cm<sup>-1</sup> in ~~the~~ infra-red spectrum as reported by Lau & Snyder<sup>(1)</sup>. Its appearance as 0-1 transition in the electronic spectrum is not expected, but as pointed out earlier, its 1-1 transition may appear. We, therefore, correlate the frequency 316 cm<sup>-1</sup> of excited state with this (448 cm<sup>-1</sup>) frequency of ground state, and get an explanation for a medium intense band at 138 cm<sup>-1</sup> (0-448+316=132) on the red side of the (0,0) band. The absence of a ground state frequency of 448 cm<sup>-1</sup> (class b<sub>1</sub>) in near ultraviolet is <sup>in</sup> the conformity with C<sub>2v</sub> symmetry of the molecule. However, if the excited state frequency 316 cm<sup>-1</sup> represents a vibration of the same symmetry in the upper electronic state ~~state~~, its appearance with appreciable intensity in the electronic spectrum can only be explained on the basis of nonplanar geometrical configuration of the excited molecule.

In the electronic spectrum of benzene derivatives the components of the 608 (e<sub>2g</sub>) vibrations of benzene are quite important. Ginsberg et al<sup>(3)</sup> have reported the frequency 514 (w) and 620 (w) as the ground state fundamentals 6a and 6b respectively in the normal toluene molecule. Dwivedi et al<sup>(8)</sup> have

reported two ground state fundamentals at 519 and  $632\text{ cm}^{-1}$  in toluene- $\alpha$ -d<sub>1</sub> molecule. Lau and Snyder<sup>(1)</sup> have assigned 6a vibration to a frequency  $499\text{ cm}^{-1}$  observed in Raman as well as infra red spectra while 6b to a frequency  $622\text{ cm}^{-1}$ . The former frequency is polarised and belongs to class a<sub>1</sub> while later is depolarised and related to b<sub>2</sub> symmetry class. Therefore, their appearance in the electronic spectrum of toluene- $\alpha$ -d<sub>3</sub> molecule is expected with appreciable intensity. We observe a medium intense band at  $37015\text{ cm}^{-1}$ , i.e., at a separation of  $500\text{ cm}^{-1}$  from (0,0) band on the lower frequency side, and another an intense band at  $36891\text{ cm}^{-1}$ , i.e., a frequency separation  $624\text{ cm}^{-1}$  on the same side. We can assign them as the ground state fundamentals 6a and 6b respectively. The 6a vibration has been assigned a value  $456\text{ cm}^{-1}$  and 6b to  $528\text{ cm}^{-1}$  in toluene in the B<sub>2</sub> state. An intense band at a frequency separation of  $528\text{ cm}^{-1}$  on the higher frequency side of the (0,0) band has been obtained in the spectrum of toluene- $\alpha$ -d<sub>3</sub> and can be very safely considered as the 6b vibration in the B<sub>2</sub> electronic state. Its 1-1 transition appears at  $97\text{ cm}^{-1}$  confirming the correlation. Hence we note that the 6b vibration has almost the same magnitude in toluene, toluene- $\alpha$ -d<sub>1</sub> and toluene- $\alpha$ -d<sub>3</sub> molecules. It is not against expectations, since this (6b) vibration is independent of the substituent groups in monoderivatives of benzene. The 6a component in the excited state has been reported at  $454$  and  $456\text{ cm}^{-1}$  for toluene<sup>(3)</sup> and toluene- $\alpha$ -d<sub>1</sub> molecules<sup>(8)</sup> respectively. A medium intense band

appears at a frequency difference 430 cm<sup>-1</sup> and has been assigned as a fundamental, representing 6a mode in the upper electronic state. The 1-1 transition appears at 74 cm<sup>-1</sup>. It is noted that 6a vibration has lower frequency in toluene  $\alpha$ -d<sub>3</sub> compared to toluene in the A<sub>1</sub> as well as B<sub>2</sub> electronic states. This shows that the vibration is x-sensitive which is expected from the mode of this vibration in benzene.

The explanation for a difference frequency 179 cm<sup>-1</sup> has been intriguing. A difference frequency of this magnitude has also been observed in toluene by Ginsberg et al<sup>(3)</sup>, but no plausible explanation could be given by them. An attempt can be made to explain this frequency as a combination of the excited state fundamentals 316 cm<sup>-1</sup> and the ground state fundamental 500 cm<sup>-1</sup>. This transition can appear with appreciable intensity, as is the case, only when the molecule losses all its symmetry elements in the excited electronic state.

A very strong frequency appears in Raman spectrum of toluene  $\alpha$ -d<sub>3</sub> at 758 cm<sup>-1</sup> which is polarised, ie, totally symmetric and belongs to symmetry class a<sub>1</sub> as reported by Lau & Snyder<sup>(1)</sup>. This frequency is observed at 760 cm<sup>-1</sup> in infra-red spectrum, and has been correlated with b<sub>1u</sub> 1010 cm<sup>-1</sup> vibration of benzene ring. In case of toluene, it appears at 788 cm<sup>-1</sup> in Raman and infrared spectra. We have found a medium intense band at 759 cm<sup>-1</sup> on the lower frequency side

of the (0,0) band which is assigned as fundamental. Its counterpart in the excited state is the frequency  $733\text{ cm}^{-1}$  which will produce a very weak band at a separation  $26\text{ cm}^{-1}$  on the red side of (0,0) band as a result of 1-1 transition. We find a very weak band at  $24\text{ cm}^{-1}$  which confirms our correlation.

The highest ground state fundamental identified in ultra-violet  $\text{IR}$  spectrum is  $1005\text{ cm}^{-1}$ . This frequency appears at  $1003\text{ cm}^{-1}$  in Raman and infrared and the ring characteristic of benzene is correlated with this. The frequency is polarised and totally symmetric as reported by Lau & Snyder<sup>(1)</sup>. The excited state counterpart of this fundamental has been found at  $930\text{ cm}^{-1}$ . The  $993\text{ (a}_{1g}\text{)}$  and  $1010\text{ (b}_{1u}\text{)}$   $\text{cm}^{-1}$  vibrations of benzene intermix to result into a composit mode in benzene derivatives. We prefer to assign the fundamentals  $759$  (ES 733)  $\text{cm}^{-1}$  and  $1005$  (ES 930)  $\text{cm}^{-1}$  as the lower and upper components of the totally symmetric composite ring vibrations. The lower component is x-sensitive.

The  $\text{C}-\text{CH}_3$  stretching frequency (7a) has been assigned a value  $1211\text{ cm}^{-1}$  in infrared and Raman (polarised) spectra. Ginsberg et al<sup>(3)</sup> have reported it at  $1212\text{ cm}^{-1}$  (vvv) in electronic spectrum of toluene. In toluene- $\alpha$ -d<sub>3</sub> molecule a frequency  $1184\text{ cm}^{-1}$  in infrared and  $1182\text{ cm}^{-1}$  in Raman spectra has been observed. The counterpart of this frequency in the excited electronic state of toluene has been reported at  $1189\text{ cm}^{-1}$ . Here again we expect a lower value for toluene- $\alpha$ -d<sub>3</sub> molecule.

Therefore the excited fundamental 1130  $\text{cm}^{-1}$  has been assigned to represent C-CD<sub>3</sub> (7a vibration) frequency.

Most of the bands in the absorption spectrum are assigned to result due to combination of the fundamentals as discussed earlier. The prominent bands have been analysed in terms of above discussed fundamentals and their overtones, (Table 1).

#### References

1. C.L. Lam & R.G. Snyder      *Spectrochim Acta* 27 A, 2073, (1971).
2. H.D. Bist, J.C.D. Brand &      *J. Mol. Spectr.* 21, 76, (1966)
- D.R. Williams                      24, 402, (1967)
- 26, 413, (1967).
3. H. Ginsberg & W.W. Roberston      *J. Chem. Phys.* 14, 511 (1946).
4. G. N. R. Tripathi, B.N. Tewari      *J. Chim. Phys.* 71, 545, (1974)
- and R.M. Verma and Sitaram
5. D.R. Singh, U.S. Tripathi      *J. Chim. Phys.* 72, 92, (1975)
- and G.N.R. Tripathi
6. H. A. Szymanski                      *Interpreted infrared spectra vol I,*  
                                            Plenum Press (1964) p.83
7. J.K. Wilmsurst &                      *Can. J. Chem.* 35, 911, (1957).
- H.J. Bernstein
8. B.K. Dwivedi, R.G. Maheshwary      *Symp. on Mol. Spectr. & Mol. Struct.*  
    and D. Sharma                              G.P.U. B-5 (1975), *Spectroscopy Let.*  
                                                    9, 313, (1976)

Received: 3/27/76  
Accepted: 4/9/76